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Abstract. In the classical theory black holes can only absorb and not emit particles. However it 
is shown that quantum mechanical effects cause black holes to create and emit particles as if they 

were hot bodies with temperature ~ ~ 10 where ~ is the surface gravity of the black 

hole. This thermal emission leads to a slow decrease in the mass of the black hole and to its eventual 
disappearance: any primordial black hole of mass less than about 10 is g would have evaporated by 
now. Although these quantum effects violate the classical law that the area of the event horizon of a 
black hole cannot decrease, there remains a Generalized Second Law: S+¼A never decreases where S 
is the entropy of matter outside black holes and A is the sum of the surface areas of the event horizons. 
This shows that gravitational collapse converts the baryons and leptons in the collapsing body into 
entropy. It is tempting to speculate that this might be the reason why the Universe contains so much 
entropy per baryon. 

t. 

Although there has been a lot of work in the last fifteen years (see [1, 2] for 
recent reviews), I think it would be fair to say that we do not yet have a fully 
satisfactory and consistent quantum theory of gravity. At the moment classical 
General Relativity still provides the most successful description of gravity. In 
classical General Relativity one has a classical metric which obeys the Einstein 
equations, the right hand side of which is supposed to be the energy momentum 
tensor of the classical matter fields. However, although it may be reasonable to 
ignore quantum gravitational effects on the grounds that these are likely to be 
small, we know that quantum mechanics plays a vital role in the behaviour of 
the matter fields. One therefore has the problem of defining a consistent scheme 
in which the space-time metric is treated classically but is coupled to the matter 
fields which are treated quantum mechanically. Presumably such a scheme would 
be only an approximation to a deeper theory (still to be found) in which space- 
time itself was quantized. However one would hope that it would be a very good 
approximation for most purposes except near space-time singularities. 

The approximation I shall use in this paper is that the matter fields, such as 
scalar, electro-magnetic, or neutrino fields, obey the usual wave equations with 
the Minkowski metric replaced by a classical space-time metric g,b. This metric 
satisfies the Einstein equations where the source on the right hand side is taken 
to be the expectation value of some suitably defined energy momentum operator 
for the matter fields. In this theory of quantum mechanics in curved space-time 
there is a problem in interpreting the field operators in terms of annihilation and 
creation operators. In flat space-time the standard procedure is to decompose 
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200 S.W. Hawking 

the field into positive and negative frequency components. For example, if ~b is 
a massless Hermitian scalar field obeying the equation dp;abrfab= 0 one expresses 
~b as 

= +  al} (1.1) 

where the {f~} are a complete orthonormal family of complex valued solutions 
of the wave equation f~;,brlab= 0 which contain only positive frequencies with 
respect to the usual Minkowski time coordinate. The operators a i and a~ are 
interpreted as the annihilation and creation operators respectively for particles 
in the i th state. The vacuum state t0) is defined to be the state from which one 
cannot annihilate any particles, i.e. 

ailO ) --0 for all i. 

In curved space-time one can also consider a Hermitian scalar field operator 
~b which obeys the covariant wave equation q~;,bg"b=0. However one cannot 
decompose into its positive and negative frequency parts as positive and negative 
frequencies have no invariant meaning in curved space-time. One could still 
require that the {f} and the {j~} together formed a complete basis for solutions 
of the wave equations with 

½iSs(fifj; ~-  ~ f~;,)d Z" = bij (1.2) 

where S is a suitable surface. However condition (1.2) does not uniquely fix the 
subspace of the space of all solutions which is spanned by the {~} and therefore 
does not determine the splitting of the operator q~ into annihilation and creation 
parts. In a region of space-time which was flat or asymptotically flat, the appro- 
priate criterion for choosing the {f/} is that they should contain only positive 
frequencies with respect to the Minkowski time coordinate. However if one has 
a space-time which contains an initial fiat region (1) followed by a region of 
curvature (2) then a final flat region (3), the basis { fli} which contains only positive 
frequencies on region (1) will not be the same as the basis {fal} which contains 
only positive frequencies on region (3). This means that the initial vacuum state 
T01) , the state which satisfies a l i l 01 )=0  for each initial annihilation operator 
ali, will not be the same as the final vacuum state f03) i.e. a3~101):#0. One can 
interpret this as implying that the time dependent metric or gravitational field 
has caused the creation of a certain number of particles of the scalar field. 

Although it is obvious what the subspace spanned by the {f~} is for an asympto- 
tically flat region, it is not uniquely defined for a general point of a curved space- 
time. Consider an observer with velocity vector v" at a point p. Let B be the least 
upper bound IR~bcat in any orthonormal tetrad whose timelike vector coincides 
with v ". In a neighbourhood U of p the observer can set up a local inertial co- 
ordinate system (such as normal coordinates) with coordinate radius of the order 
of B - L  He can then choose a family {f} which satisfy equation (1.2) and which 
in the neighbourhood U are approximately positive frequency with respect to 
the time coordinate in U. For modes fi whose characteristic frequency co is high 
compared to B ~, this leaves an indeterminacy between .f~ and its complex con- 
jugate ~ of the order of the exponential of some multiple of - coB -~. The indeter- 
minacy between the annihilation operator a~ and the creation operator a[ for the 
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Particle Creation by Black Holes 201 

mode is thus exponentially small. However, the ambiguity between the a~ and 
the a[ is virtually complete for modes for which co < B ~. This ambiguity introduces 
an uncertainty of + ½ in the number operator a~ a~ for the mode. The density of 
modes per unit volume in the frequency interval co to co + dco is of the order of 
coZdco for co greater than the rest mass m of the field in question. Thus the un- 
certainty in the local energy density caused by the ambiguity in defining modes 
of wavelength longer than the local radius of curvature B -~, is of order B 2 in 
units in which G= c= h= 1. Because the ambiguity is exponentially small for 
wavelengths short compared to the radius of curvature B- ~, the total uncertainty 
in the local energy density is of order B z. This uncertainty can be thought of as 
corresponding to the local energy density of particles created by the gravitational 
field. The uncertainty in the curvature produced via the Einstein equations by 
this uncertainty in the energy density is small compared to the total curvature 
of space-time provided that B is small compared to one, i.e. the radius of curvature 
B -~ is large compared to the Planck length 10 .33 cm. One would therefore 
expect that the scheme of treating the matter fields quantum mechanically on a 
classical curved space-time background would be a good approximation, except 
in regions where the curvature was comparable to the Planck value of 1066 cm -2. 

From the classical singularity theorems [3-6], one would expect such high cur- 
vatures to occur in collapsing stars and, in the past, at the beginning of the present 
expansion phase of the universe. In the former case, one would expect the regions 
of high curvature to be hidden from us by an event horizon [7]. Thus, as far as 
we are concerned, the classical geometry-quantum matter treatment should be 
valid apart from the first 10 .43 s of the universe. The view is sometimes expressed 
that this treatment will break down when the radius of curvature is comparable 
to the Compton wavelength ~10-13cm of an elementary particle such as a 
proton. However the Compton wavelength of a zero rest mass particle such as 
a photon or a neutrino is infinite, but we do not have any problem in dealing 
with electromagnetic or neutrino radiation in curved space-time. All that hap- 
pens when the radius of curvature of space-time is smaller than the Compton 
wavelength of a given species of particle is that one gets an indeterminacy in the 
particle number or, in other words, particle creation. However, as was shown 
above, the energy density of the created particles is small locally compared to the 
curvature which created them. 

Even though the effects of particle creation may be negligible locally, .I shall 
show in this paper that they can add up to hove a significant influence on black 
holes over the lifetime of the universe ~1017s or 106o units of Planck time. 
It seems that the gravitational field of a black hole will create particles and emit 
them to infinity at just the rate that one would expect if the black hole were an 
ordinary body with a temperature in geometric units of ~/27c, where ~ is the 
"surface gravity" of the black hole [8]. In ordinary units this temperature is of 
the order of 1026M - 1 °K, where M is the mass, in grams of the black hole. For 
a black hole of solar mass (1033 g) this temperature is much lower than the 3 °K 
temperature of the cosmic microwave background. Thus black holes of this size 
would be absorbing radiation faster than they emitted it and would be increasing 
in mass. However, in addition to black holes formed by stellar collapse, there 
might also be much smaller black holes which were formed by density fluctua- 

赵萌�


赵萌�


37436
高亮

37436
高亮

37436
附注
当进入强引力场区域时，时空曲率变大，曲率半径变小。粒子场真空态中长波长的部分开始与曲率半径尺度相当，这样的话动量空间的涨落是在增强，能量的不确定度开始增大，低能量的粒子数算符不再具有十分确定的本征值，也就是说正负粒子产生的过程显著增强了。

37436
高亮



202 S.W. Hawking 

tions in the early universe [9, 101. These small black holes, being at a higher 
temperature, would radiate more than they absorbed. They would therefore pre- 
sumably decrease in mass. As they got smaller, they would get hotter and so 
would radiate faster. As the temperature rose, it would exceed the rest mass of 
particles such as the electron and the muon and the black hole would begin to 
emit them also. When the temperature got up to about 1012 °K or when the mass 
got down to about 1014 g the number of different species of particles being emitted 
might be so great [11] that the black hole radiated away all its remaining rest 
mass on a strong interaction time scale of the order of 10 -23 s. This would pro- 
duce an explosion with an energy of 1035 ergs. Even if the number of species of 
particle emitted did not increase very much, the black hole would radiate away 
all its mass in the order of 10-28M 3 s. In the last tenth of a second the energy 
released would be of the order of 103o ergs. 

As the mass of the black hole decreased, the area of the event horizon would 
have to go down, thus violating the law that, classically, the area cannot decrease 
[-7, 12]. This violation must, presumably, be caused by a flux of negative energy 
across the event horizon which balances the positive energy flux emitted to 
infinity. One might picture this negative energy flux in the following way. Just 
outside the event horizon there will be virtual pairs of particles, one with negative 
energy and one with positive energy. The negative particle is in a region which 
is classically forbidden but it can tunnel through the event horizon to the region 
inside the black hole where the Killing vector which represents time translations 
is spacelike. In this region the particle can exist as a real particle with a timelike 
momentum vector even though its energy relative to infinity as measured by the 
time translation Killing vector is negative. The other particle of the pair, having 
a positive energy, can escape to infinity where it constitutes a part of the thermal 
emission described above. The probability of the negative energy particle tun- 
nelling through the horizon is governed by the surface gravity ~c since this quantity 
measures the gradient of the magnitude of the Killing vector or, in other words, 
how fast the Killing vector is becoming spacelike. Instead of thinking of negative 
energy particles tunnelling through the horizon in the positive sense of time one 
could regard them as positive energy particles crossing the horizon on past- 
directed world-lines and then being scattered on to future-directed world-lines by 
the gravitational field. It should be emphasized that these pictures of the mecha- 
nism responsible for the thermal emission and area decrease are heuristic only 
and should not be taken too literally. It should not be thought unreasonable that 
a black hole, which is an excited state of the gravitational field, should decay 
quantum mechanically and that, because of quantum fluctuation of the metric, 
energy should be able to tunnel out of the potential well of a black hole. This 
particle creation is directly analogous to that caused by a deep potential well in 
flat space-time [18]. The real justification of the thermal emission is the mathe- 
matical derivation given in Section (2) for the case of an uncharged non-rotating 
black hole. The effects of angular momentum and charge are considered in 
Section (3). In Section (4) it is shown that any renormalization of the energy- 
momentum tensor with suitable properties must give a negative energy flow 
down the black hole and consequent decrease in the area of the event horizon. 
This negative energy flow is non-observable locally. 
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Particle Creation by Black Holes 203 

The decrease in area of the event horizon is caused by a violation of the weak 
energy condition [5 7, 12] which arises from the indeterminacy of particle num- 
ber and energy density in a curved space-time. However, as was shown above, 
this indeterminacy is small, being of the order of B 2 where B is the magnitude 
of the curvature tensor. Thus it can have a diverging effection a null surface like 
the event horizon which has very small convergence or divergence but it can not 
untrap a strongly converging trapped surface until B becomes of the order of 
one. Therefore one would not expect the negative energy density to cause a 
breakdown of the classical singularity theorems until the radius of curvature of 
space-time became 10- 33 cm. 

Perhaps the strongest reason for believing that black holes can create and 
emit particles at a steady rate is that the predicted rate is just that of the thermal 
emission of a body with the temperature •/2rc. There are independent, thermo- 
dynamic, grounds for regarding some multiple of the surface gravity as having 
a close relation to temperature. There is an obvious analogy with the second law 
of thermodynamics in the law that, classically, the area of the event horizon can 
never decrease and that when two black holes collide and merge together, the 
area of the final event horizon is greater than the sum of the areas of the two 
original horizons [7, 12]. There is also an analogy to the first law of thermo- 
dynamics in the result that two neighbouring black hole equilibrium states are 
related by [8] 

dM = i~  dA + f2dJ 

where M, f2, and J are respectively the :mass, angular velocity and angular mo- 
mentum of the black hole and A is the area of the event horizon. Comparing this to 

dU = TdS + pdV 

one sees that if some multiple of A is regarded as being analogous to entropy, 
then some multiple of ~c is analogous to temperature. The surface gravity is also 
analogous to temperature in that it is constant over the event horizon in equi- 
librium. Beckenstein [19] suggested that A and ~c were not merely analogous to 
entropy and temperature respectively but that, in some sense, they actually were 
the entropy and temperature of the black hole. Although the ordinary second 
law of thermodynamics is transcended in that entropy can be lost down black 
holes, the flow of entropy across the event horizon would always cause some 
increase in the area of the horizon. Beckenstein therefore suggested [20] a Gen- 
eralized Second Law: Entropy + some multiple (unspecified) of A never decreases. 
However he did not suggest that a black hole could emit particles as well as 
absorb them. Without such emission the Generalized Second Law would be 
violated by for example, a black hole immersed in black body radiation at a lower 
temperature than that of the black hole. On the other hand, if one accepts that 
black holes do emit particles at a steady rate, the identification of ~/2rc with tem- 
perature and ¼A with entropy is established and a Generalized Second Law 
confirmed. 
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204 S.W. Hawking 

2. Gravitational Collapse 

It is now generally believed that, according to classical theory, a gravitational 
collapse will produce a black hole which will settle down rapidly to a stationary 
axisymmetric equilibrium state characterized by its mass, angular momentum 
and electric charge [-7, 13]. The Kerr-Newman solution represent one such family 
of black hole equilibrium states and it seems unlikdy that there are any others. 
It has therefore become a common practice to ignore the collapse phase and to 
represent a black hole simply by one of these solutions. Because these solutions 
are stationary there will not be any mixing of positive and negative frequencies 
and so one would not expect to obtain any particle creation. However there is 
a classical phenomenon called superradiance [.14-17] in which waves incident 
in certain modes on a rotating or charged black hole are scattered with increased 
amplitude [see Section (3)]. On a particle description this amplification must cor- 
respond to an increase in the number of particles and therefore to stimulated 
emission of particles. One would therefore expect on general grounds that there 
would also be a steady rate of spontaneous emission in these superradiant modes 
which would tend to carry away the angular momentum or charge of the black 
hole [.16]. To understand how the particle creation can arise from mixing of 
positive and negative frequencies, it is essential to consider not only the quasi- 
stationary final state of the black hole but also the time-dependent formation 
phase. One would hope that, in the spirit of the "no hair" theorems, the rate of 
emission would not depend on details of the collapse process except through the 
mass, angular momentum and charge of the resulting black hole. I shall show 
that this is indeed the case but that, in addition to the emission in the super- 
radiant modes, there is a steady rate of emission in all modes at the rate one 
would expect if the black hole were an ordinary body with temperature ~/2~z. 

I shall consider first of all the simplest case of a non-rotating uncharged black 
hole. The final stationary state for such a black hole is represented by the 
Schwarzschild solution with metric 

ds2= - (1- 2~Mr ) dtZ + (1- 2~Mr )- l dr2 + r2(dO2 + sin2 Od4)2) . (2.1) 

As is now well known, the apparent singularities at r=  2M are fictitious, arising 
merely from a bad choice of coordinates. The global structure of the analytically 
extended Schwarzschild solution can be described in a simple manner by a 
Penrose diagram of the r-t plane (Fig. 1) [6, 13]. In this diagram null geodesics 
in the r-t plane are at +_45 ° to the vertical. Each point of the diagram represents 
a 2-sphere of area  4gr  2. A conformal transformation has been applied to bring 
infinity to a finite distance: infinity is represented by the two diagonal lines (really 
null surfaces) labelled J +  and J - ,  and the points I +, I - ,  and I °. The two hori- 
zontal lines r= 0 are curvature singularities and the two diagonal lines r=  2M 
(really null surfaces) are the future and past event horizons which divide the 
solution up ihto regions from which one cannot escape to J +  and J - .  On the 
left of the diagram there is another infinity and asymptotically flat region. 

Most of the Penrose diagram is not in fact relevant to a black hole formed 
by gravitational collapse since the metric is that of the Schwarzchild solution 
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r =0 s ingular i ty  i + 

l o 

r = 0 s ingular i ty  17 

Fig. 1. The Penrose diagram for the analytically extended Schwarzschild solution 

r=O s ingular i ty  I* surface of 
~ .- 'collapsed body 

/ / / / /  ~ ~ ,  ] ° 

1 ~ " ~ l -  
region not applicable to '  
a gravi tat ional  collapse 

Fig, 2. Only the region of the Schwarzschild solution outside the collapsing body is relevant for a 
black hole formed by gravitational collapse. Inside the body the solution is completely different 

singular i ty  ~ event horizon 

r=O 
origin o f /  
coordinates 

\col lapsing body 

Fig, 3. The Penrose diagram of a spherically symmetric collapsing body producing a black hole. The 
vertical dotted line on the left represents the non-singular centre of the body 

only in the region outside the collapsing matter and only in the asymptotic future. 
In the case of exactly spherical collapse, which I shall consider for simplicity, the 
metric is exactly the Schwarzchild metric everywhere outside the surface of the 
collapsing object which is represented by a timelike geodesic in the Penrose 
diagram (Fig. 2). Inside the object the metric is completely different, the past 
event horizon, the past r=  0 singularity and the other asymptotically flat region 
do not exist and are replaced by a time-like curve representing the origin of polar 
coordinates. The appropriate Penrose diagram is shown in Fig. 3 where the con- 
formal freedom has been used to make the origin of polar coordinates into a 
vertical line. 

In this space-time consider (again for simplicity) a massless Hermitian scalar 
field operator ~ obeying the wave equation 

~;~bgab=0. (2.2) 
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(The results obtained would be the same if one used the conformally invariant 
wave equation: 

~b .b+ ~R" ,abg ~ ¢p = 0 .) 

The operator 4~ can be expressed as 

O= Z,{ f , , , ,  + f j i  } . (2.3) 

The solutions {f} of the wave equation f~;abg ab =0  can be chosen so that on past 
null infinity J -  they form a complete family satisfying the orthonormality con- 
ditions (1.2) where the surface S is J -  and so that they contain only positive 
frequencies with respect to the canonical affine parameter on J - .  (This last con- 
dition of positive frequency can be uniquely defined despite the existence of 
"supertranslations" in the Bondi-Metzner-Sachs asymptotic symmetry group 
[21, 22].) The operators al and a~ have the natural interpretation as the annihi- 
lation and creation operators for ingoing particles i.e. for particles at past null 
infinity J - .  Because massless fields are completely determined by their data on 
J - ,  the operator 4~ can be expressed in the form (2.3) everywhere. In the region 
outside the event horizon one can also determine massless fields by their data on 
the event horizon and on future null infinity J + .  Thus one can also express q~ 
in the form 

= 2 i  {Pibi + Pi b~i + qi ci + c~c/* }. (2.4) 

Here the {p~} are solutions of the wave equation which are purely outgoing, i.e. 
they have zero Cauchy data on the event horizon and the {q~} are solutions which 
contain no outgoing component, i.e. they have zero Cauchy data on J + .  The 
{Pi} and {q~} are required to be complete families satisfying the orthonormality 
conditions (1.2) where the surface S is taken to be J +  and the event horizon 
respectively. In addition the {Pi} are required to contain only positive frequencies 
with respect to the canonical affine parameter along the null geodesic generators 
of~ ¢+. With the positive frequency condition on {pi}, the operators {bi} and {b~} 
can be interpreted as the annihilation and creation operators for outgoing par- 
ticles, i.e. for particles on o ¢+. It is not clear whether one should impose some 
positive frequency condition on the {qi} and if so with respect to what. The choice 
of the {qi} does not affect the calculation of the emission of particles to J + .  I shall 
return to the question in Section (4). 

Because massless fields are completely determined by their data on J -  one 
can express {Pi} and {qi} as linear combinations of the {f~} and {~}: 

Pi = Z j (~ i j f j  + f i i j~) ,  (2.5) 

qi= ~_,~(TiJj+ rhjL) . (2.6) 

These relations lead to corresponding relations between the operators 

b i = 2 j ( ~ i j  a j - -  ~ij aJ),  (2.7) 

ci = ~_,i(~ij a i -  Viii a~j). (2.8) 
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The initial vacuum state ]01, the state containing no incoming particles, i.e. 
no particles on J - ,  is defined by 

a i l0 )=0  for all i. (2.9) 

However, because the coefficients/~ij wilt not be zero in general, the initial vacuum 
state will not appear to be a vacuum state to an observer at J + .  Instead he will 
find that the expectation value of the number operator for the i th outgoing mode is 

(0_ [bf b, 10_ ) = Yj[31j[ 2. (2.10) 

Thus in order to determine the number of particles created by the gravitational 
field and emitted to infinity one simply has to calculate the coefficients flij. One 
would expect this calculation to be very messy and to depend on the detailed 
nature of the gravitational collapse. However, as I shall show, one can derive an 
asymptotic form for the fl~i which depends only on the surface gravity of the 
resulting black hole. There will be a certain finite amount of particle creation 
which depends on the details of the collapse. These particles will disperse and at 
late retarded times on J +  there will be a steady flux of particles determined by 
the asymptotic form of flij. 

In order to calculate this asymptotic form it is more convenient to decompose 
the ingoing and outgoing solutions of the wave equation into their Fourier com- 
ponents with respect to advanced or retarded time and use the continuum nor- 
malization. The finite normalization solutions can then be recovered by adding 
Fourier components to form wave packets. Because the space-time is spherically 
symmetric, one can also decompose the incoming and outgoing solutions into 
spherical harmonics. Thus, in the region outside the collapsing body, one can 
write the incoming and outgoing solutions as 

f~',m = (2u) -¢r -  l(co')-}I~;,(r)ei°Y~Ytm(O, ¢) ,  (2.11) 

po~t,,=(2~)-~r- lco-¢P~o(r)ei~UY~m(O , (o), (2.12) 

where v and u are the usual advanced and retarded coordinates defined by 

21-~M- 1 , (2.13) v = t + r + 2 M l o g  

u = t - r - 2 M  log 2M - 1 (2.14) 

Each solution Po~m can be expressed as an integral with respect to co' over solu- 
tions fo~,zm and f~'lm with the same values of l and Lmi (from now on I shall drop 
the suffices I, m): 

P~ = [. ~(c%oy foy + flo~,L,)dco' . (2.151 

To calculate the coefficients c%~ o, and flo~o,, consider a solution p~ propagating 
backwards from J +  with zero Cauchy data on the event horizon. A part p(o} ) of 
the solution P,o wilt be scattered by the static Schwarzchitd field outside the col- 
lapsing body and will end up on J -  with the same frequency co. This will give 
a c~(co'-co) term in c%~,. The remainder p(21 of p~ will enter the collapsing body 
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event horizon 
/ surfaces of ~ Jcons tan t  phase 

1 

V= V 0 

Fig. 4. The  so lu t ion  p,~ of the wave equa t ion  has  an  infinite n u m b e r  of cycles near  the event  hor izon 
and  near  the surface v = v o 

where it will be partly scattered and partlY reflected through the centre, eventually 
emerging to J - .  It is this part p~) which produces the interesting effects. Because 
the retarded time coordinate u goes to infinity on the event horizon, the surfaces 
of constant phase of the solution Po, will pile up near the event horizon (Fig. 4). 
To an observer on the collapsing body the wave would seem to have a very large 
blue-shift. Because its effective frequency was very high, the wave would propa- 
gate by geometric optics through the centre of the body and out on J - .  On 
~¢-p~2) would have an infinite number of cycles just before the advanced time 
v= Vo where Vo is the latest time that a null geodesic could leave J - ,  passthrough 
the centre of the body and escape to J +  before being trapped by the event 
horizon. One can estimate the form of _(2) t',o on J -  near v=  Vo in the following 
way. Let x be a point on the event horizon outside the matter and let 1 a be'a null 
vector tangent to the horizon. Let n a be the future-directed null vector at x which 
is directed radially inwards and normalized so that I " n , = -  t. The vector -~n"  
(e small and positive) will connect the point x on the event horizon with a nearby 
null surface of constant retarded time u and therefore with a surface of constant 
phase of the solution p~). If the vectors l" and n a are parallelly transported along 
the null geodesic ~ through x which generates the horizon, the vector - e n "  will 
always connect the event horizon with the same surface of constant phase ~r ~(2) v l  [ J~o  • 

To see what the relation between e and the phase of p(o 2) is, imagine in Fig. 2 that 
the collapsing body did not exist but one analytically continued the empty space 
Schwarzchild solution back to cover the whole Penrose diagram. One could then 
transport the pair (P, n") back along to the point where future and past event 
horizons intersected. The vector - en ~ would then lie along the past event horizon. 
Let 2 be the affine parameter along the past event horizon which is such that at 

dx ,~ 
the point of intersection of the two horizons, 2 = 0 and-d~-= n". The affine par- 

ameter 2 is related to the retarded time u on the past horizon by 

2=  - Ce-"" (2.16) 

where C is constant and ~c is the surface gravity of the black hole defined by 
K",b Kb= --xK" on the horizon where K ~ is the time translation Killing vector. 
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( 1) 
For a Schwarzchild black hole K=~-M . It follows from this that the vector 

- e n  a connects the future event horizon with the surfaoe of constant phase 

- ~ (loge - logC) of the solution p~Y). This result will also hold in the real space- 

time (including the collapsing body) in the region outside the body. Near the 
event horizon the solution p~) will obey the geometric optics approximation as 
it passes through the body because its effective frequency will be very high. This 
means that if one extends the null geodesic 7 back past the end-point of the event 
horizon and out onto J -  at v = v o and parallelly transports n ~ along 7, the vector 
- e n  ~ will still connect 7 to a surface of constant phase of the solution .(2) On kto~ • 

J - n  a will be parallel to the Killing vector K ~ which is tangent to the null geodesic 
generators of d -  : 

n ~ = D K  ~" 

Thus on J -  for v o -  v small and positive, the phase of the solution will be 

co (log(v o -  v) -  l o g D -  logC). (2.17) 
K 

- -  (2) Thus on • p~ will be zero for v > Vo and for v < v0 

- -C-D-- p ~  (2r 0 co r Po~exp log (2.18) 

where Pg ~ Po~(2M) is the value of the radial function for P~ on the past event 
horizon in the analytically continued Schwarzchild solution. The expression 
(2.18) for p~) is valid only for Vo- v small and positive. At earlier advanced times 
the amplitude will be different and the frequency measured with respect to v, will 
approach the original frequency c0. 

By Fourier transforming p~) one can evaluate its contrlbutions to ~o~, and 
fi,o~,. For large values of co' these will be determined by the asymptotic form 
(2.18). Thus for large co' 

1 ~ -  . ~ C O  tO) ~ - 1 +-'~- 
~(2) ~(2~)- P ~ ( C D )  exp(t(co- co )v o F 1 -  - i w )  (2.19) Ut'OX o ' 

fl(2) ~ _ i ~ )  ,~') (2.20) COCO' ~ ( - -  • 

The solution p~) is zero on J -  for large values ofv. This means that its Fourier 
transform is analytic in the upper half co' plane and that p~) will be correctly 
represented by a Fourier integral in which the contour has been displaced into the 

upper half co' plane. The Fourier transform of p~) contains a factor ( -  i c o ' ) -  ~ + ~- 

which has a logarithmic singularity at co'= 0. To obtain R(2) from ~/(2) by (2.20) ] J  ~0(,0 ~ ~O3¢O ~ 

one has to analytically continue ~o~'(z)o~, anticlockwise round this singularity, This 
means that 

~,o,, ex rcco (2) (2.21) 
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Actually, the fact that p(o 2) is not given by (2.18) at early advanced times means 
that the singularity in c~,o,, occurs at co'=co and not at c#=0.  HoweVer the rela- 
tion (2.2t) is still valid for large co'. 

The expectation value of the total number of created particles at J +  in the 
frequency range co to co+dco is dcoS~ Ifio,~,,lZdco '. Because lfi~,,,,l goes like (co') -} 
at large co' this integral diverges. This infinite total number of created particles 
corresponds to a finite steady rate of emission continuing for an infinite time as 
can be seen by building up a complete orthonormal family of wave packets from 
the Fourier components p~,. Let 

PJ, = e- ~ ~5~+ 1)~e- 2rclne- ~O, po,dco (2.22) 

where j and n are integers, j > 0 ,  e>0.  For e small these wave packets will have 
frequency je and will be peaked around retarded time u =  2tone-1 with width e-1. 
One can expand {pj,} in terms of the {fo,} 

PJ, = S~ (c~,o," L" + fij,o,'L') dco' (2.23) 

where 
o~jn~,=e-½SJJ+*)~e-i='ne-'°o:~o,dco etc. (2.24) 

For j>>e, n>>e 

i c o  ~ , 
[c~jno~,l --= (272)- 1P~ co-~ F (1 - ~-) g- ~(co ) -~ 

~j+l)~ logco')dco" • ~ exp ico"(- 2tone- a + to- 1 

= 7r-IP~,CO-~F(1- ~ )  ~-~(co')-~z- 1 sin½ez (2.25) 

where co=je and z=•  -1 logco'-2rcne -I .  For wave-packets which reach J +  at 
late retarded times, i.e. those with large values of n, the main contribution to 
c~j.,,, and fia,o,' come from very high frequencies co' of the order of exp(2rcn~ae- 1). 
This means that these coefficients are governed only by the asymptotic forms 
(2.19, 2.20) for high co' which are independent of the details of the collapse. 

The expectation value of the number of particles created and emitted to 
infinity J +  in the wave-packet mode pj, is 

oo 2 t So l/3mo'l dco . (2.26) 

One can evaluate this as follows. Consider the wave-packet pj, propagating 
backwards from J + .  A fraction 1 - F ; ,  of the wave-packet will be scattered by 
the static Schwarzchild field and a fraction F;, will enter the collapsing body. 

2 , ,,W,,,o', -Ifi),~,,[ )do) (2.27) 

where eJ]~,, and fl}])~,, are calculated using (2.19, 2.20) from the part p}2) of the 
wave-packet which enters the star. The minus sign in front of the second term on 

~2) make the right of (2.27) occurs because the negative frequency components ot vj, 
a negative contribution to the flux into the collapsing body. By (2.21) 

~ ( 2 )  - 1 ( 2 )  ~a,o,,1 = exp(rcco~c )[fi),,o,[ , (2.28) 
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Thus the total number of particles created in the mode pj, is 

F].(exp(2rccotc- 1)_ 1)- 1. (2.29) 

But for wave-packets at late retarded times, the fraction Fjn which enters the 
collapsing body is almost the same as the fraction of the wave-packet that would 
have crossed the past event horizon had the collapsing body not been there but 
the exterior Schwarzchild solution had been analytically continued. Thus this 
factor Fj, is also the same as the fraction of a similar wave-packet coming from 
J -  which would have crossed the future event horizon and have been absorbed 
by the black hole. The relation between emission and absorption cross-section is 
therefore exactly that for a body with a temperature, in geometric units, of tc/2rc. 

Similar results hold for the electromagnetic and linearised gravitational fields. 
The fields produced on J -  by positive frequency waves from J +  have the same 
asymptotic form as (2.18) but with an extra blue shift factor in the amplitude. 
This extra factor cancels out in the definition of the scalar product so that the 
asymptotic forms of the coefficients e and fi are the same as in the Eqs. (2.19) and 
(2.20). Thus one would expect the black hole also to radiate photons and gravitons 
thermally. For massless fermions such as neutrinos one again gets similar results 
except that the negative frequency components given by the coefficients fi now 
make a positive contribution to the probability flux into the collapsing body. 
This means that the term I/~12 in (2.27) now has the opposite sign. From this it 
follows that the number of particles emitted in any outgoing wave packet mode 
is (exp(2rccotc-1)+ 1)-1 times the fraction of that wave packet that would have 
been absorbed by the black hole had it been incident from J - .  This is again 
exactly what one would expect for thermal emission of particles obeying Fermi- 
Dirac statistics. 

Fields of non-zero rest mass do not reach J -  and J + .  One therefore has to 
describe ingoing and outgoing states for these fields in terms of some concept such 
as the projective infinity of Eardley and Sachs [23] and Schmidt [24]. However, 
if the initial and final states are asymptotically Schwarzchild or Kerr solutions, 
one can describe the ingoing and outgoing states in a simple manner by separa- 
tion of variables and one can define positive frequencies with respect to the time 
translation Killing vectors of these initial and final asymptotic space-times. In the 
asymptotic future there will be no bound states: any particle will either fall through 
the event horizon or escape to infinity. Thus the unbound outgoing states and the 
event horizon states together form a complete basis for solutions of the wave 
equation in the region outside the event horizon. In the asymptotic past there 
could be bound states if the body that collapses had had a bounded radius for 
an infinite time. However one could equally well assume that the body had col- 
lapsed from an infinite radius in which case there would be no bound states. The 
possible existence of bound states in the past does not affect the rate of particle 
emission in the asymptotic future which will again be that of a body with tem- 
perature ~/2rc. The only difference from the zero rest mass case is that the fre- 
quency co in the thermal factor (exp (27rco~c-1)_T_ 1)-1 now includes the rest mass 
energy of the particle. Thus there will not be much emission of particles of rest 
mass m unless the temperature ~c/27r is greater than m. 

赵萌�




212 S.W. Hawking 

One can show that these results on thermal emission do not depend on 
spherical symmetry. Consider an asymmetric collapse which produced a black 
hole which settled to a non-rotating uncharged Schwarzchild solution (angular 
momentum and charge will be considered in the next section). The fact that the 
final state is asymptotically quasi-stationary means that there is a preferred 
Bondi coordinate system [25] on J +  with respect to which one can decompose 
the Cauchy data for the outgoing states into positive frequencies and spherical 
harmonics. On J -  there may or may not be a preferred coordinate system but 
if there is not one can pick an arbitrary Bondi coordinate system and decompose 
the Cauchy data for the ingoing states in a similar manner. Now consider one 
of the J +  states P,o~,, propagating backwards through this space-time into the 
collapsing body and out again onto J - .  Take a null geodesic generator 7 of the 
event horizon and extend it backwards beyond its past end-point to intersect J -  
at a point y on a null geodesic generator ,~ of J - .  Choose a pair of null vectors 
(l a, fia) at y with 1 a tangent to 7 and fia tangent to 2. Parallelly propagate P, h a 
along 7 to a point x in the region of space-time where the metric is almost that 
of the final Schwarzchild solution. At x ri a will be some linear combination of P 
and the radial inward directed null vector n a. This means that the vector -ef t"  
will connect x to a surface of phase -co/~c ( l oge -  logE) of the solution P~am 
where E is some constant. As before, by the geometric optics approximation, the 
vector -e f t  ~ at y will connect y to a surface of phase -co/~c (log~ - logE) o~ ° vot,~(2) 
where p ~  is the part of P~t,~ which enters the collapsing body. Thus on the null 
geodesic generator 2 of J - ,  the phase of~ ~,o,L,,"(z) will be 

ico 
- - -  (log(v 0 - v ) -  logH) (2.30) 

K 

where v is an anne  parameter on 2 with value v 0 at y and H is a constant. By the 
geometrical optics approximation, the value "-f ,,(2) ,-~ e,oz,, on 2 will be 

1 
for v 0 -  v~ small and positive and zero for v > v o where L is a constant. On each 
null geodesic generator of J¢-vot,~"(2~ will have the form (2.31) with different values 
of L, v o, and H. The lack" of spherical symmetry during the collapse will cause 
p ( 2 )  o, Zm on J -  to contain components of spherical harmonics with indices (l', m') 
different from (l, m). This means that one now has to express Vo,~m'(2) in the form 

P(t~2l)m = El'm' ~o~ {O~((2l)mce, l,m, L'l 'm"-F fi(co2l)m~,l,m , L ,  Vm,}dco' . (2.32) 

Because of (2.31), the coefficients ~(2) and fl~2) will have the same co' dependence 
as in (2.19) and (2.20). Thus one still has the same relation as (2.21): 

(2)  - 1 / ? (2 )  (2.33) Ic~l~,v, , , l=exp( ~tc°~: ) t'~olm~'Vm" " 

AS before, for each (l, m), one can make up wave packets Ps,~,: The number of 
particles emitted in such a wave packet mode is 

Zt',m' ~ Ifljnl,no'vm'] 2dco'. (2.34) 
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Similarly, the fraction Fj,I,~ of the wave packet that enters the collapsing body is 

~,,~j.,,.o,,,.,.,~ -I/~5.,,.~,,~.,..I } d o o  . (2.35) 

Again, Fj,~,, is equal to the fraction of a similar wave packet coming from o¢- 
that would have been absorbed by the black hole. Thus, using (2.33), one finds 
that the emission is just that of a body of temperature ~c/2n: the emission at late 
retarded times depends only on the final quasi-stationary state of the black hole 
and not on the details of the gravitational collapse, 

3. Angular Momentum and Charge 

If the collapsing body was rotating or electrically charged, the resulting black 
hole would settle down to a stationary state which was described, not by the 
Schwarzchild solution, but by a charged Kerr solution characterised by the 
mass M, the angular momentum J, and the charge Q. As these solutions are 
stationary and axisymmetric, one can separate solutions of the wave equations 
in them into a factor e i~u or e i~v times e- i'~¢ times a function of r and 0. In the case 
of the scalar wave equation one can separate this last expression into a function 
of r times a function of 0 [26]. One can also completely separate any wave equa- 
tion in the non-rotating charged case and Teukolsky [27] has obtained com- 
pletely separable wave equations for neutrino, electromagnetic and linearised 
gravitational fields in the uncharged rotating case. 

Consider a wave packet of a classical field of charge e with frequency co and 
axial quantum number m incident from infinity on a Kerr black hole. The change 
in mass d M  of the black hole caused by the partial absorption of the wave packet 
will be related to the change in area, angular momentum and charge by the 
classical first law of black holes: 

/£ 
dM = ~ dA + ~ d J  + ~d~2 (3.1) 

where f2 and q~ are the angular frequency and electrostatic potential respectively 
of the black hole [13]. The fluxes of energy, angular momentum and charge in 
the wave packet wilt be in the ratio ~o:m:e .  Thus the changes in the mass, angular 
momentum and charge of the black hole will also be in this ratio. Therefore 

d M (1 - f2rnco - 1 _ eq~co - 1 ) =  _ ~  d A . (3.2) 

A wave packet of a classical Boson field will obey the weak energy condition: the 
local energy density for any observer is non-negative. It follows from this [7, 12] 
that the change in area d A  induced by the wave-packet will be non-negative. 
Thus if 

co < m f 2  + eq~ (3.3) 

the change in mass d M  of the black hole must be negative. In other words, the 
black hole will lose energy to the wave packet which will therefore be scattered 
with the same frequency but increased amplitude. This is the phenomenon known 
as "superradiance". 

赵萌�
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For classical fields of half-integer spin, detailed calculations [28] show that 
there is no superradiance. The reason for this is that the scalar product for half- 
integer spin fields is positive definite unlike that for integer spins. This means 
that the probability flux across the event horizon is positive and therefore, by 
conservation of probability, the probability flux in the scattered wave packet must 
be less than that in the incident wave packet. The reason that the above argument 
based on the first law breaks down is that the energy-momentum tensor for a 
classical half-integer spin field does not obey the weak energy condition. On a 
quantum, particle level one can understand the absence of superradiance for 
fermion fields as a consequence of the fact that the Exclusion Principle does not 
allow more than one particle in each outgoing wave packet mode and therefore 
does not allow the scattered wave-packet to be stronger than the incident wave- 
packet. 

Passing now to the quantum theory, consider first the case of an unchanged, 
rotating black hole. One can as before pick an arbitrary Bondi coordinate frame 
on J -  and decompose the operator ¢k in terms of a family {f~,,} of incoming 
solutions where the indices co, l, and m refer to the advanced time and angular 
dependence of f on J -  in the given coordinate system. On J +  the final quasi- 
stationary state of the black hole defines a preferred Bondi coordinate system 
using which one can define a family {P,ol,,} of outgoing solutions. The index l in 
this case labels the spheroidal harmonics in terms of which the wave equation is 
separable. One proceeds as before to calculate the asymptotic form of p~],~ on 
J - .  The only difference is that because the horizon is rotating with angular 
velocity f2 with respect to J + ,  the effective frequency near a generator of the 
event horizon is not co but co-m~2. This means that the number of particles 
emitted in the wave-packet mode Pj,~m is 

{exp (2rc~c- l(co---mO)) -T- 1 } - 1/~j,zm. (3.4) 

The effect of this is to cause the rate of emission of particles with positive angular 
momentum m to be higher than that of particles with the same frequency co and 
quantum number l but with negative angular momentum - m .  Thus the particle 
emission tends to carry away the angular momentum. For Boson fields, the 
factor in curly brackets in (3.4) is negative for co < mr2. However the fraction Fjnl,, 
of the wave-packet that would have been absorbed by the black hole is also 
negative in this case because co < mr2 is the condition for superradiance. In the 
limit that the temperature ~¢/2rc is very low, the only particle emission occurs is 
an amount gFjnz, . in the modes for which oo<mf2. This amount of particle 
creation is equal to that calculated by Starobinski [16] and Unruh [29], who 
considered only the final stationary Kerr solution and ignored the gravitational 
collapse. 

One can treat a charged non-rotating black hole in a rather similar way. The 
behaviour of fields like the electromagnetic or gravitational fields which do not 
carry an electric charge will be the same as before except that the charge on the 
black will reduce the surface gravity k and hence the temperature of the black 
hole. Consider now the simple case of a massless charged scalar field ~b which 
obeys the minimally coupled wave equation 

gab( V a -  ieAa) ( V b -  ieAb)dp-- 0. (3.5) 
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The phase of a solution P~o of the wave equation (3.5) is not gauge-invariant but 
the propagation vector ik, = V,(logp~,)- ieA~ is. In the geometric optics or WKB 
limit the vector k, is null and propagates according to 

k,,, b k b  = - -  e F a b  kb  . (3.6) 

An infinitessimal vector z" will connect points with a "guage invariant" phase 
difference of ik S .  If z ~ is propagated along the integral curves of k ~ according to 

~ b k  b = - -  e F ~ z  b (3.7) 

z" will connect surfaces of constant guage invariant phase difference. 
In the final stationary region one can choose a guage such that the electro- 

magnetic potential A, is stationary and vanishes on J + .  In this guage the field 
equation (3.5) is separable and has solutions p~, with retarded time dependence 
e i~o". Let x be a point on the event horizon in the final stationary region and let 
l" and n ~ be a pair of null vectors at x. As before, the vector - en"  will connect 
the event horizon with the surface of actual phase -co/~ ( loge- logC)  of the 
solution Po,. However the guage invariant phase will be - ~-  1((0 - e~) (log~ - logC) 
where ~ =  K~A, is the electrostatic potential on the horizon and K" is the time- 
translation Killing vector. Now propagate l" like/~ in Eq. (3.6) back until it inter- 
sects a generator 2 of J -  at a point y and propagate n ~ like z ~ in Eq. (3.7) along 
the integral curve of l". With this propagation law, the vector - en"  will connect 
surfaces of constant guage invariant phase. Near J -  one can use a different 
electromagnetic guage such that A" is zero on J - .  In this guage the phase of 
p~) along each generator of ~ -  will have the form 

- (c0- eq~)~c- 1 {log (Vo- v ) -  logH} (3.8) 

where H is a constant along each generator. This phase dependence gives the 
same thermal emission as before but with co replaced by co-  e~. Similar remarks 
apply about charge toss and superradiance. In the case that the black hole is both 
rotating and charged one can simply combine the above results. 

4. The Back-Reaction on the Metric 

I now come to the difficult problem of the back-reaction of the particle creation 
on the metric and the consequent slow decrease of the mass of the black hole. 
At first sight it might seem that since all the time dependence of the metric in 
Fig. 4 is in the collapsing phase, all the particle creation must take place in the 
collapsing body just before the formation of the event horizon, and that an in- 
finite number of created particles would hover just outside the event horizon, 
escaping to J +  at a steady rate. This does not seem reasonable because it would 
involve the collapsing body knowing just when it was about to fall through the 
event horizon whereas the position of the event horizon is determined by the 
whole future history of the black hole and may be someway outside the apparent 
horizon, which is the only thing that can be determined locally [7]. 

Consider an observer falling through the horizon at some time after the 
collapse. He can set up a local inertial coordinate patch of radius ~-M centred 
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on the point where he crosses the horizon. He can pick a complete family {h,~} 
of solutions of the wave equations which obey the condition: 

- - z ° (h,olh,o2;,,- h,o2h,o,;,,)d = b(0) 1 - 0)2) (4.1) 

(where S is a Cauchy surface) and which have the approximate coordinate de- 
pendence e i',* in the coordinate patch. This last condition determines the splitting 
into positive and negative frequencies and hence the annihilation and creation 
operators fairly well for modes h,o with 0 )>M but not for those with 0)<M. 
Because the {h,o}, unlike the {P,o}, are continuous across the event horizon, they 
will also be continuous on J - .  It is the discontinuity in the {Po,} on J -  at v= Vo 
which is responsible for creating an infinite total number of particles in each mode. 
Po, by producing an (co')-1 tail in the Fourier transforms of the {P,o} at large 
negative frequencies 0)'. On the other hand, the {h,o} for 0 )>M will have very 
small negative frequency components on J - .  This means that the observer at 
the event horizon will see few particles with co > M. He will not be able to detect 
particles with co < M because they will have a wavelength bigger than his particle 
detector which must be smaller than M. As described in the introduction, there 
will be an indeterminacy in the energy density of order M -4 corresponding to 
the indeterminacy in the particle number for these modes. 

The above discussion shows that the particle creation is really a global process 
and is not localised in the collapse: an observer falling through the event horizon 
would not see an infinite number of particles coming out from the collapsing 
body. Because it is a non-local process, it is probably not reasonable to expect 
to be able to form a local energy-momentum tensor to describe the back-reaction 
of the particle creation on the metric. Rather, the negative energy density needed 
to account for the decrease in the area of the horizon, should be thought of as 
arising from the indeterminacy of order of M -  4 of the local energy density at the 
horizon. Equivalently, one can think of the area decrease as resulting from the 
fact that quantum fluctuations of the metric will cause the position and the very 
concept of the event horizon to be somewhat indeterminate. 

Although it is probably not meaningful to talk about the local energy-momen- 
tum of the created particles, one may still be able to define the total energy flux 
over a suitably large surface. The problem is rather analogous to that of defining 
gravitational energy in classical general relativity: there are a number of different 
energy-momentum pseudo-tensors, none of which have any invariant local sig- 
nificance, but which all  agree when integrated over a sufficiently large surface. 
In the particle case there are similarly a number of different expressions one can 
use for the renormalised energy-momentum tensor. The energy-momentum 
tensor for a classical field ~b is 

Tab= q~.~b;b - I  ~a ~g,bg qS;c4~;a • (4.2) 

If one takes this expression over into the quantum theory and regards the ~b's as 
operators one obtains a divergent result because there is a creation operator for 
each mode to the right of an annihilation operator. One therefore has to subtract 
out the divergence in some way. Various methods have been proposed for this 
(e.g. [30]) but they all seem a bit ad hoe. However, on the analogy of the pseudo- 
tensor, one would hope that the different renormalisations would all give the 
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same integrated fluxes. This is indeed the case in the final quasi-stationary region: 
all renormalised energy-momentum operators Tab which obey the conservation 
equations T;~b=0, which are stationary i.e. which have zero Lie derivative with 
respect to the time translation Killing vector K a and which agree near J +  will 
give the same fluxes of energy and angular momentum over any surface of con- 
stant r outside the event horizon. It is therefore sufficient to evaluate the energy 
flux near J +  : by the conservation equations this will be equal to the energy flux 
out from the event horizon. Near J +  the obvious way to renormalise the energy- 
momentum operator is to normal order the expression (4.2) with respect to 
positive and negative frequencies defined by the time-translation Killing vector 
K a of the final quasi-stationary state. Near the event horizon normal ordering 
with respect to K" cannot be the correct way to renormalise the energy-momentum 
operator since the normal-ordered operator diverges at the horizon. However it 
still gives the same energy outflow across any surface of constant r. A renormalised 
operator which was regular at the horizon would have to violate the weak energy 
condition by having negative energy density. This negative energy density is not 
observable locally. 

In order to evaluate the normal ordered operator one wants to choose the 
{qi} which describe waves crossing the event horizon, to be positive frequency 
with respect to the time parameter defined by K a along the generators of the 
horizon in the final quasi-stationary state. The condition on the {q~} in the time- 
dependent collapse phase is not determined but this should not affect wave 
packets on the horizon at late times. If one makes up wave-packets {qj,} like the 
{Pi,}, one finds that a fraction Fj, penetrates through the potential barrier around 
the black hole and gets out to J -  with the same frequency co that it had on the 
horizon. This produces a c5(~o-c0') behaviour in 7~,~,. The remaining fraction 
1-Fj, of the wave-packet is reflected back by the potential barrier and passes 
through the collapsing body and out onto J - .  Here it will have a similar form 
to p}2). Thus for large &, 

~)j( 2 ) = - 1 ( 2 )  ,~,, exp(rcco~: )lt/),,o,,[. (4.3) 

By a similar argument to that used in Section (2) one would conclude that the 
number of particles crossing the event horizon in a wave-packet mode peaked at 
late times would be 

(1 --Fj,) {exp (2~zco~c- 1)_ t} - 1 (4.4) 

For a given frequency ~o, i.e. a given value of j, the absorption fraction Fj,  goes 
to zero as the angular quantum number 1 increases because of the centrifugal 
barrier. Thus at first sight it might seem that each wave-packet mode of high 1 
value would contain 

{exp (2rco)~c- 1)_ 1} --1 

particles and that the total rate of particles and energy crossing the event horizon 
would be infinite. This calculation would, of course, be inconsistent with the 
result obtained above that an observer crossing the event horizon would see only 
a finite small energy density of order M -  4. The reason for this discrepancy seems 
to be that the wave-packets {pj,} and {qj,} provide a complete basis for solutions 
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of the wave equation only in the region outside the event horizon and not actu- 
ally on the event horizon itself. In order to calculate the particle flux over the 
horizon one therefore has to calculate the flux over some surface just outside the 
horizon and take the limit as the surface approaches the horizon. 

To perform this calculation it is convenient to define new wave-packets 
X - - n  (2)-4-n (2) j , - t , j ,  - u  j,  which represent the part of Pjn and q j, which passes through the 
collapsing body and jj,v. = ,-j,'(l) 4-- -~jna!l) which represents the part of pj, and q j, which 
propagates out to J -  through the quasi-stationary metric of the final black hole. 
In the initial vacuum state the {y~,} modes will not contain any particles but 
each x~ mode will contain {exp(2~zcox-1) - 1} -1 particles. These particles will 
appear to leave the collapsing body just outside the event horizon and will propa- 
gate radially outwards. A fraction Fin will penetrate through the potential barrier 
peaked at r =  3M and will escape to J +  where they will constitute the thermal 
emission of the black hole. The remaining fraction 1-Fj, will be reflected back by 
the potential barrier and will cross the event horizon. Thus the net particle flux 
across a surface of constant r just outside the horizon will be Fj, directed outwards. 

I shall now show that using the normal ordered energy momentum operator, 
the average energy flux across a surface of constant r between retarded times Ul 
and u2 

(u 2 - u 1)-1 j'~ (0_ I T~bt0_ ) K " d S  b (4. 5) 

is directed outwards and is equal to the energy flux for the thermal emission from 
a hot body. Because the {y j.} contain no negative frequencies on J - ,  they will 
not make any contribution to the expectation value (4.5) of the normal ordered 
energy-momentum operator. Let 

x j ,  = I~  (¢j,o' f~ '  + ~mo, fo,,)dco' . (4.6) 

Near J +  

Xj,~=(Fjn)-~pjn . (4.7) 

Thus 

(4.5) = (u2-  Ul) -1 Re {Y4,, E,",," 5~ f:~ coc0"r),p,,~,,~,, 

• (F~,,.,, t~,,.,,~2,,..~,,-F~,,~,,pj,,~,,¢2,,.,,o,,)dco'du} (4.8) 

where co and co" are the frequencies of the wave-packets pj~ and p~,,,,, respectively• 
In the limit u 2 - u l  tends to infinity, the second term in the integrand in (4.8) will 
integrate out and the first term will contribute only for (j", n")= (j, n). By argu- 
ments similar to those used in Section 2, 

f;o i~a,~,,12dco,__ {exp(27zco~c- 1)_ 1} - 1  (4.9) 

Therefore 

(4.5) = S~ Fo, co{exp(2~zco~:- 1)_ 1} -ldco (4.10) 

where Fo,= lim F: n is the fraction of wave-packet of frequency that would be 
n--+ oo J 

absorbed by the black hole. The energy flux (4.10) corresponds exactly to the rate 
of thermal emission calculated in Section 2. Any renormalised energy momentum 
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Fig. 5. The Penrose diagram for a gravitational collapse followed by the slow evaporation and even- 
tual disappearance of the black hole, leaving empty space with no singularity at the origin 

operator which agrees with the normal ordered operator near J + ,  which obeys 
the conservation equations, and which is stationary in the final quasi-stationary 
region will give the same energy flux over any surface of constant r. Thus it will 
give positive energy flux out across the event horizon or, equivalently, a negative 
energy flux in across the event horizon. 

This negative energy flux will cause the area of the event horizon to decrease 
and so the black hole will not, in fact, be in a stationary state. However, as long 
as the mass of the black hole is large compared to the Planck mass 10-5 g, the 
rate of evolution of the black hole will be very slow compared to the characteristic 
time for light to cross the Schwarzchild radius. Thus it is a reasonable approxima- 
tion to describe the black hole by a sequence of stationary solutions and to cal- 
culate the rate of particle emission in each solution. Eventually, when the mass 
of the black hole is reduced to 10-5 g, the quasi-stationary approximation will 
break down. At this point, one cannot continue to use the concept of a classical 
metric. However, the total mass or energy remaining in the system is very small. 
Thus, provided the black hole does not evolve into a negative mass naked sin- 
gularity there is not much it can do except disappear altogether. The baryons or 
leptons that formed the original collapsing body cannot reappear because all 
their rest mass energy has been carried away by the thermal radiation. It is 
tempting to speculate that this might be the reason why the universe now contains 
so few baryons compared to photons: the universe might have started out with 
baryons only, and no radiation. Most of the baryons might have fallen into small 
black holes which then evaporated giving back the rest mass energy of baryons 
in the form of radiation, but not the baryons themselves. 

The Penrose diagram of a black hole which evaporates and leaves only empty 
space is shown in Fig. 5. The horizontal line marked "singularity" is really a 
region where the radius of curvature is of the order the Planck length. The matter 
that runs into this region might reemerge in another universe or it might even 
reemerge in our universe through the upper vertical line thus creating a naked 
singularity of negative mass. 
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